City
Epaper

Switching the heart's fuel source can help its cells regenerate: Study

By ANI | Updated: February 22, 2020 14:30 IST

As revealed by a new study, switching from fats to glucose as a fuel source for the heart muscles could help the organ regenerate when its cells that are responsible for contraction die out as a result of heart failure caused by viruses, toxins, high blood pressure, or heart attacks.

Open in App

As revealed by a new study, switching from fats to glucose as a fuel source for the heart muscles could help the organ regenerate when its cells that are responsible for contraction die out as a result of heart failure caused by viruses, toxins, high blood pressure, or heart attacks.

The study led by UT Southwestern researchers, published in Nature Metabolism, could open whole new avenues for treating a variety of heart conditions arising out of cardiac cell damage.

Current pharmaceutical treatments for heart failure - including ACE inhibitors and beta-blockers - centre on trying to stop a vicious cycle of heart muscle loss as strain further damages remaining heart muscle, causing more cells to die, explains UT Southwestern physician-researcher Hesham A. Sadek, M.D., Ph.D., the J. Fred Schoellkopf, Jr. Chair in Cardiology. There are no existing treatments for rebuilding heart muscle.

Nine years ago, Sadek and his colleagues discovered that mammalian hearts can regenerate if they're damaged in the first few days of life, spurred by the division of cardiomyocytes, the cells responsible for a heart's contractile force. However, this capacity is completely lost by 7 days old, an abrupt turning point in which division of these cells dramatically slows.

Subsequent research has shown that this change in regenerative capacity appears to stem, at least in part, from damaging free radicals generated by organelles known as mitochondria, which power cells. These free radicals damage cells' DNA, a phenomenon called DNA damage, which prompts them to stop dividing.

The shift in free radical production appears to be spurred by a change in what mitochondria in the cardiomyocytes consume for energy, Sadek explains. Although mitochondria rely on glucose in utero and at birth, they switch to fatty acids in the days after birth to utilize these energy-dense molecules in breast milk.

Sadek and his colleagues wondered whether forcing mitochondria to continue to consume glucose might stymie DNA damage and, in turn, extend the window for heart cell regeneration. To test this idea, the researchers tried two different experiments.

In the first, they followed mouse pups whose mothers were genetically altered to produce low-fat breastmilk and that fed on low-fat chow after they weaned. The researchers found that these rodents' hearts maintained regenerative capacity weeks later than normal, with their cardiomyocytes continuing to express genes associated with cell division for a significantly longer window than those fed a diet of regular breastmilk and chow. However, this effect didn't last into adulthood - their livers eventually made up the deficit by synthesizing the fats that their diets were missing, which significantly reduced their hearts' regenerative capacity.

In the second experiment, the researchers created genetically altered mals in which the researchers could delete an enzyme, known as pyruvate dehydrogenase kinase 4 (PDK4), necessary for the heart cells' mitochondria to digest fatty acids. When the researchers delivered a drug to turn off PDK4 production, the mals' cardiomyocytes switched to consuming glucose instead of fatty acids, even in adulthood. After researchers simulated a heart attack, these mals experienced an improvement in heart function, which was accomped by markers in gene expression that suggested their cardiomyocytes were still actively dividing.

Sadek notes that these findings provide proof of principle that it's possible to reopen the window for heart cell regeneration by mpulating what cardiomyocyte mitochondria consume for energy.

"Eventually," he says, "it may be possible to develop drugs that change what cardiomyocytes eat to make them divide again, reversing heart failure and representing a true cure."

( With inputs from ANI )

Open in App

Related Stories

MumbaiMumbai Police Arrest Model and Actress Neha Malik's Domestic Helper for Stealing Jewellery Worth Rs 34 Lakh

EntertainmentBen Affleck talks about ‘the only time' he saw his father cry

BusinessStar Estate Surpasses Rs. 7,000 Cr in Sales, Eyes Rs. 10,000 Cr Milestone Next

NationalWill send strong message of unity: Cong leaders back demand for special Parliament session

TechnologyChemicals in food containers, medical equipment behind spike in heart disease deaths: Lancet

स्वास्थ्य Realted Stories

HealthChemicals in food containers, medical equipment behind spike in heart disease deaths: Lancet

HealthWho’s Steering Indian Health Policy? COP11 Puts Foreign Interference in the Spotlight

HealthIsraeli researchers discovered stress in pregnancy affects baby's brain before birth

HealthJabalpur’s newborn gets life-saving heart treatment under Rashtriya Bal Swasthya Karyakram

HealthCovid-19 vaccines have no lasting impact on metabolic health: Study