City
Epaper

Regular physical activity linked to better organized preteen brains: Study

By ANI | Updated: May 24, 2021 23:10 IST

Regular physical activity has positive effects on children's developing brain circuits, finds a Boston Children's Hospital study using neuroimaging data from nearly 6,000 early adolescents.

Open in App

Regular physical activity has positive effects on children's developing brain circuits, finds a Boston Children's Hospital study using neuroimaging data from nearly 6,000 early adolescents.

Physical activity of any kind was associated with more efficiently organized, flexible, and robust brain networks, the researchers found. The more physical activity, the more "fit" the brain.

The findings were published in the journal Cerebral Cortex.

"It didn't matter what kind of physical activity children were involved in - it only mattered that they were active," says Caterina Stamoulis, PhD, principal investigator on the study and director of the Computational Neuroscience Laboratory at Boston Children's. "Being active multiple times per week for at least 60 minutes had a widespread positive effect on brain circuitry."

Specifically, Stamoulis and her trainees, Skylar Brooks and Sean Parks found positive effects on circuits in multiple brain areas. These circuits play a fundamental role in cognitive function and support attention, sensory processing, motor function, memory, decision-making, and executive control. Regular physical activity also partially offset the effects of unhealthy body mass index (BMI), which was associated with detrimental effects on the same brain circuitry.

With support from the National Science Foundation's Harnessing the Data Revolution and BRAIN Initiative, the researchers tapped data from the long-term, NIH-sponsored Adolescent Brain Cognitive Development (ABCD) study.

They analyzed functional magnetic resonance imaging (fMRI) data from 5,955 9- and 10-year-olds and crunched these data against data on physical activity and BMI, using advanced computational techniques developed in collaboration with the Harvard Medical School High-Performance Computing Cluster.

"Early adolescence is a very important time in brain development," notes Stamoulis. "It's associated with a lot of changes in the brain's functional circuits, particularly those supporting higher-level processes like decision-making and executive control. Abnormal changes in these areas can lead to risky behaviours and deficits in cognitive function that can follow people throughout their lifetime."

The functional MRI data were captured in the resting state when the children were not performing any explicit cognitive task. This allows analysis of the "connectome" -- the architecture of brain connections that determines how efficiently the brain functions and how readily it can adapt to changes in the environment, independently of specific tasks.

The team adjusted the data for age, gestational age at birth, puberty status, sex, race, and family income. Physical activity and sports involvement measures were based on youth and parent surveys collected by the ABCD study.

The analysis found that physical activity was associated with positive brain-wide network properties reflecting the connectome's efficiency, robustness, and clustering into communities of brain regions. These same properties were detrimentally affected by high BMI. Physical activity also had a positive effect on the local organization of the brain; unhealthy BMI had adverse impacts in some of the same areas.

"Based on our results, we think physical activity affects brain organization directly, but also indirectly by reducing BMI, therefore mitigating its negative effects," Stamoulis says.

Optimal functional brain structure consists of small regions or "nodes" that are well connected internally and send information to other parts of the brain through strong, but relatively few, long-range connections, Stamoulis explains.

"This organization optimizes the efficiency of information processing and transmission, which is still developing in adolescence and can be altered by a number of risk factors," she says. "Our results suggest that physical activity has a protective effect on this optimization process across brain regions."

( With inputs from ANI )

Disclaimer: This post has been auto-published from an agency feed without any modifications to the text and has not been reviewed by an editor

Tags: Cerebral CortexCaterina stamoulisSkylar brooksBoston children's hospital
Open in App

Related Stories

HealthPlant-based meal packages associated with lower BMI in children: Study

HealthPlant-based food packages linked to lower BMI in children: Research

TechnologyStudy reveals noninvasive brain imaging may differentiate among hand gestures

HealthUS doctors perform first-ever brain surgery on a unborn baby

TechnologyStudy discovers how genetic mutations contribute to adult epilepsy

Lifestyle Realted Stories

LifestyleBollywood Actresses Who Pulled Off Corset-Styled Outfits With Flair

LifestylePastels to Neons: 5 Times Mithila Palkar Pulled Off Traditional Outfit Looks

LifestyleFrom Mango to Coconut: 5 Must-Try Healthy Halwa Recipes for the Summer Season

LifestyleConstant Gas and Acidity? Follow These 3 Ayurveda Remedies

NationalGold Rate on April 28, 2025: Prices Drop Ahead of Akshaya Tritiya; Check Rates in Metro Cities