City
Epaper

Closer look at unexamined interactions could improve drug purification process: Study

By ANI | Updated: November 4, 2021 18:05 IST

Research explores the fundamentals of how different molecules interact with various surfaces during the purification process.

Open in App

Research explores the fundamentals of how different molecules interact with various surfaces during the purification process.

The process of purifying biopharmaceutical drugs remains a costly and time-consuming challenge. A deeper understanding of how unwanted elements within biomanufacturing proteins bind to the molecules developed to remove them could help researchers make purity processes more efficient, more complex, and increasingly scalable.

In research published in the journal Langmuir, a team led by Steven Cramer, an endowed chair professor of chemical and biological engineering at Rensselaer Polytechnic Institute, explored the fundamentals of how different molecules interact with various surfaces during the purification process.

Cramer is a leading expert in chromatographic bioprocessing, a separation technique used in biopharmaceutical purification to selectively choose which components of a protein mixture should be kept and which components should be removed. Ions or molecules, known as ligands, are developed to bind to specific components that should either be saved or discarded during this process.

"This is part of a very big effort to understand the fundamentals of how these molecules interact with surfaces," said Cramer, a member of the Rensselaer Center for Biotechnology and Interdisciplinary Studies (CBIS), where the work was performed. "Our group is trying to ramp up the intellectual level of this kind of analysis in a variety of ways."

This new paper builds upon research by the Cramer Lab recently published in Biotechnology and Bioengineering. In that work, researchers used nuclear magnetic resonance (NMR) spectroscopy and complex computer simulations to examine the fundamentals of how different molecules interact with various surfaces and ligands, including how and where binding happens, and if certain molecular interactions affect the binding process.

Working with Merck Pharmaceuticals and Bio-Rad Laboratories and using the NMR core facility in CBIS run by co-author Scott McCallum, the team looked at the Fc part of an IgG1 antibody and how ligands interact with that section of the antibody protein in particular. (If you were to picture an antibody looking like the letter "Y," the Fc part would be the tail.) IgG1 antibodies are used in a large majority of biopharmaceutical drugs, meaning a deeper understanding of how their components interact with various molecules and ligands could have widespread implications.

In the Langmuir paper, the team took its exploration even deeper by adding nanoparticles to the surface of various proteins in order to see exactly where the ligands were binding.

"With this approach, we can then also look at some of the subtle interactions that are happening," Cramer said. "Sometimes these ligands come together and form these clusters of ligands, and these clusters actually drastically change the behavior."

This work, Cramer said, could lead to the development of new and improved materials and ligands. It also could help researchers develop more nuanced and specific ways of separating out unwanted molecules that are very similar to another type of molecule that needs to remain. All of these advancements could improve the drug purification process, making it more efficient and effective.

( With inputs from ANI )

Disclaimer: This post has been auto-published from an agency feed without any modifications to the text and has not been reviewed by an editor

Tags: LangmuirRensselaer polytechnic instituteSteven cramerScott mccallumLally school of management at rensselaer polytechnic institute
Open in App

Related Stories

HealthPatients receive too little rehab therapy after stroke: Research

TechnologyWarming climate spurs harmful oxygen loss in lakes: Research

TechnologyStudy finds clearance of protein linked to Alzheimer's is controlled by circadian cycle

HealthClearance of protein linked to Alzheimer's controlled by circadian cycle: Study

LifestylePandemic induced increase in home delivery service, unlikely to last: Study

Technology Realted Stories

TechnologyTelecom industry backs govt move to tackle spam calls, messages from OTT platforms

TechnologyIndian youth ready and disruptive today, setting research milestones: PM Modi

Technology6 oil marketing companies invest Rs 290 crore to support 303 startups: Hardeep Puri

TechnologyChemicals in food containers, medical equipment behind spike in heart disease deaths: Lancet

TechnologyPiyush Goyal discusses India's opportunities with top business leaders in UK