City
Epaper

Researchers discover gene silencing DNA enzyme that target single molecule

By ANI | Updated: May 10, 2023 20:15 IST

San Diego (California) [US], May 10 : A DNA enzyme, or DNAzyme, has been created by researchers at the ...

Open in App

San Diego (California) [US], May 10 : A DNA enzyme, or DNAzyme, has been created by researchers at the University of California, Irvine that can identify between two RNA strands inside a cell and cut the one linked to the sickness while leaving the healthy strand unharmed. This ground-breaking "gene silencing" method may fundamentally alter how DNAzymes are created and used to treat neurological illnesses, infectious diseases, and cancer.

Nucleic acid enzymes called DNAzymes are used to cut other molecules. The Dz 46 enzyme, created by UCI's team through chemistry, particularly targets the allele-specific RNA mutation in the KRAS gene, the principal regulator of cell growth and division, which can be detected in 25% of all cases of human cancer. In the online journal Nature Communications, a description of how the team accomplished this enzyme development was only recently published.

"Generating DNAzymes that can effectively function in the natural conditions of cell systems has been more challenging than expected," said corresponding author John Chaput, UCI professor of pharmaceutical sciences. "Our results suggest that chemical evolution could pave the way for development of novel therapies for a wide range of diseases."

Gene silencing has been available for more than 20 years and some FDA-approved drugs incorporate various versions of the technology, but none can distinguish a single point mutation in an RNA strand. The benefit of the Dz 46 enzyme is that it can identify and cut a specific gene mutation, offering patients an innovative, precision medicine treatment.

The DNAzyme resembles the Greek letter omega and acts as a catalyst by accelerating chemical reactions. The "arms" on the left and right bind to the target region of the RNA. The loop binds to magnesium, and folds and cuts the RNA at a very specific site. But generating DNAzymes with robust multiple turnover activity under physiological conditions required some ingenuity, because DNAzymes are normally very dependent on concentrations of magnesium not found inside a human cell.

"We solved that problem by re-engineering the DNAzyme using chemistry to reduce its dependency on magnesium and did so in such a way that we could maintain high catalytic turnover activity," Chaput said. "Ours is one of the very first, if not the first, example of achieving that. The next steps are to advance Dz 46 to a point that it's ready for pre-clinical trials."

Disclaimer: This post has been auto-published from an agency feed without any modifications to the text and has not been reviewed by an editor

Tags: UCIJohn chaputThe University Of California San DiegoThe University Of CaliforniaIrvineUniversity Of CaliforniaSan DiegoSan Diego State UniversityUc San Diego Jacobs School Of EngineeringUc San DiegoThe University Of California San FranciscoUc San Diego Health
Open in App

Related Stories

International5.2 Magnitude Earthquake Strikes San Diego; Tremors Felt Across Southern California, Alert For Possible Aftershocks

InternationalCalifornia Plane Crash: US Military Fighter Jet EA-18G Growler Crashes Into San Diego Harbor; Video Emerges

EntertainmentDeadpool & Wolverine Screening Ignites San Diego Comic-Con 2024 With Drone Show Teasing Galactus & ‘Fantastic Four’ (Watch Video)

InternationalUS Campus Protest: Many Injured as Violent Clashes Erupt at UCLA Between Pro-Palestinian and Pro-Israel Activists, Visuals Emerge

InternationalMarco Troper: 19-Year-Old Son of Former YouTube CEO Susan Wojcicki Found Dead at US University

Technology Realted Stories

TechnologySK bioscience wins patent case against Moderna in South Korea

TechnologyIndian scientists develop optical sensing platform to detect cholesterol

TechnologyNew curricula to set a benchmark for quality of healthcare professionals: Centre

TechnologyGCC workforce to India to reach 3 million by 2030, tier 2 cities to lead

TechnologySwiggy gets 1st 'sell' rating since listing from Ambit Capital